
File System Update
Possible approaches

Fri, May 7, 2004

Each front-end, whether an IRM based on the MVME-162 board or a PowerPC based on 
the MVME-2401 board, includes a nonvolatile memory-resident file system, which is 
used for keeping program and data files. The program files may be local applications, of 
which many may be active, or page applications, of which only one may be active at a 
time. A typical IRM uses 192K bytes for this memory, whereas a PowerPC node uses 
1.5M bytes. When a program that is used in many nodes is updated, the copy stored in 
each node’s file system must be updated. At present, this is done manually, although 
updating 160+ nodes can be tedious. This note explores how to do it automatically. In 
the end, a smarter manual update is preferred.

In principle, a manual update could be done using multicast targeting, so that all nodes 
would obtain the latest value at once. But there is a problem for IRMs, in that their 
limited available memory may not have enough contiguous space to receive a new 
updated copy of a program, which is often a bit larger than the previous version. In this 
case, the result is that the older version is deleted, but if that does not result in enough 
contiguous space available, the new one cannot be downloaded successfully. 

Another problem is that multicasting reaches all nodes, whereas all nodes may not be 
running that program and therefore do not want it taking up space in their own file 
systems. But it is even worse than that. Because there are two types of nodes, the 
program files are different for each CPU. IRMs keep executable files; PowerPC nodes 
keep object files that are automatically linked during activation. In recognition of these 
two incompatible file versions, there are two “library” nodes. Node0508 houses all IRM 
files, using a 1 MB nonvolatile memory card. Node0619 houses all PowerPC files. For 
these reasons, a file is normally updated one node at a time. The Download page 
application, normally installed as Page D, makes this easy, as one only needs to change 
the target node number to move from one target to another. (It is neither necessary nor 
desirable to telnet into each node, for example.)

Automatic updating
Suppose we can assume that whatever file version is stored in the related library 

node is one that should be updated in all nodes that need that file. One could imagine still 
using multicast, but with some checks. Suppose one multicast address applied for all 
68K nodes, and another applied for all PowerPC nodes. Also, if a node received a 
multicast message whose version date indicated it is newer than one already housed in 
that node, it might either go get it from the library node, or it could receive it as the rest 
of it is multicast. The assumption here is that one does not place a test update version 
on the library node, but only versions that are supposed to work.

An alternative scheme of subscribing to a library node for updates to specific files might 
be considered. When a new version is placed in the library node, it might target all the 
individual subscribers. This avoids the problems with multicasting in sending the code 
to nodes that do not need it. But why would not every IRM wish to subscribe to every 
file that is of common interest? If so, many transfers from the library would be required.



Advertising approach
The library node might periodically multicast the version dates. Each node can 

check whether the version date is newer, whether it has enough room, and arrange to 
download a copy to itself. Again, two multicast addresses would have to be assigned 
for this, to cover the two CPU types. This is a bit like advertising the availability of a 
software update. It is efficient in that it uses multicasting to advertise to all nodes. In the 
advertising message there might be included a minimum system version date, so that a 
system that is too old to run the new version would not pick it up.

One problem with the advertising approach, besides updating a program to an older 
system with which it is not compatible, is that a new local application may require 
different use of the parameter list, meaning that a new version cannot be loaded for 
execution until the parameter list has been suitably modified. Perhaps there is a way to 
download a new version but not automatically switch to it.

What communications mechanism should be used for this advertising purpose? If the 
feature is to be part of the system code, it could be done as a new listype. Or, since it is 
similar to one that already exists, that one may be modified to include the new support. 

If the feature is to be supported via a local application, it could be done as a new Acnet 
protocol to which the new LA listens. It might be called UPDF, for “update file.” (The 
library node would likely run an advertising local application, say, called ADVF, for 
“advertise file.”) Every node that wishes to participate in the auto-update process 
would need to have this new LA enabled. This approach does not need to add to the 
multicast list at (TRING+0x240). No new UDP port must be defined, although there 
would be a new transient UDP port# used when the node accesses the library node to 
get a new copy of a given file. But this new feature is not Acnet-related.

How often must advertising take place? If a new node were built, how long should one 
wait before all relevant files are updated? This would not work to help populate a 
newly-created node, because only files already resident in a node are auto-updated. But 
suppose a new version is installed in a library node. How long is required before a node 
is updated with this version?

What size message can describe the current version date of a file? Consider a record of 
16 bytes, where 8 bytes hold the file name and 8 bytes the version date, as 6 bytes of 
YrMoDaHrMnSc and two extra bytes. One of these can indicate the CPU type, which is 
(decimal) 40 for the MC68040 chip and 75 for the MPC750 PowerPC chip. Thus, an 
ethernet message of 1024 bytes, for example, could include 64 such advertising records. 
Library node0508 currently houses 128 files, although it has space in its CODES table for 
up to 256 entries. Library node0619 currently houses only 76 files, although it, too, can 
hold up to 256 entries.

A slow periodic multicast message can serve to keep things in synchronization well 
enough. But when a new version of a program file has been posted to a library node, it 
might be good to cause an immediate advertisement of that version, so that interested 
nodes can pick up the new version very soon.

File System Update p. 2



An attitude about such changes that has been followed heretofore is that one should not 
make file changes unless it is needed, for fear that making any change might cause 
disruption in operations. (“If it ain’t broke, don’t fix it!”) With that attitude, we can get 
into the situation where a number of files have been upgraded, but only a few nodes 
have been updated with those latest versions. It may be that we need some moderation 
in this advertisement/update approach, which assumes that any change made to a 
library node should be spread to the other nodes. If we only manually operated the 
advertisement step, we could wait to do it at a “safe” time. But what is safe for one node 
may not be safe for others. Of course, if a few nodes are doing more mission critical 
work, such that they should not even be in this scheme, they could simply not have 
their auto-updating LA enabled. That would mean they are in a situation the same as 
now; their programs would be updated only manually.

Let us assume that most nodes want the auto-updating feature, so that their auto-
updating LA is enabled. Then, when one updates the version in a library node, one 
recognizes that this will likely update (nearly) all nodes that use that file. One would 
not likely want to update the library node without provoking an advertisement update. 
The chief advantage of the approach over simply multicasting the latest version is that 
only the nodes that need a given file will update it, not all nodes receiving the multicast 
advertisement message.

Manual approach, redesigned
What if we instead just implement a new listype just like the one used by Page D 

for copying files, except that it will not work unless several conditions are met:

1. The CPU type matches that of the local station
2. The program has a valid entry in the CODES table
3. The version date is different from the one in the CODES table
4. There is sufficient space to contain the new file version

Except for point #2, we could modify the logic of the present code that supports listype 
76 to make these additional checks. But suppose we do modify the present support to 
include the above checks, but we condition the #2 check on whether the setting was 
multicast. If it is not multicast, then the program is meant to be copied. If it is multicast, 
it should only be copied if there is a CODES table entry for it already. One problem here 
is that a setting routine does not realize that a setting was sent via multicast; indeed, a 
setting routine is not formally related to the network at all.

For point #1, it is hard to decide whether we have the proper type of program. Maybe 
this can be left to the user, just as it is now. But if we target node 09F9, we target all 
nodes. So how can PowerPC nodes determine which CPU type is being downloaded? 
Just because it came from an IRM, it may be that the IRM, while running Page D, got it 
from a PowerPC before passing it to the target PowerPC. So identifying the nature of 
the source node is not sufficient. If a program file is being transferred, which right now 
only includes file types PAGE and LOOP, an examination of the initial contents can do the 
trick. For PowerPC nodes, the first part of the object file is a PEF key. For IRMs, the first 
part of the executable is a 68K LINK instruction, which begins 0x4E56. So the rule might 
be that only PowerPC nodes can house PowerPC program files, but any node can house 

File System Update p. 3



a given data file.

To determine whether there is enough space available to contain a newer version of a 
file, which is often somewhat larger, is a bit tricky for IRMs. There may not be space at 
the moment. But if the current version of the file were deleted, there may be enough. So 
the logic should look for this possibility. If there is not enough space, downloading of 
the file should be disabled, since doing so would delete the old version while being 
unable to accept the new one. As a result, the node ends up with no version.

Reestablish objective
Let us review the initial objective. The scheme above does not actually perform 

automatic updating of software changes. But it allows targeting a multicast address to 
share a new version of a file with other nodes, avoiding doing so if it is unnecessary or 
difficult, but doing so when it can. Nothing is automatic; the user consciously targets 
the multicast address when necessary to perform a wide-ranging update.

The code for listype 76 in IRM currently does not check that the various pieces 
downloaded completely fill the file and leave no holes. This was somewhat intentional, 
but it was not done this way for the PowerPC. In the latter case, each data segment 
must immediately follow the last one. This requirement could be added to the IRM. The 
result is that no file can be written unless it is entirely written, from beginning to end.

Download sub-protocol
During a download operation, three kinds of transfers occur. The first transfer 

announces the size of the given named file to be transferred. This is followed by one or 
more data transfers, each of which indicates a starting offset, thus causing the SIZE 
field, which was set to zero by the initial transfer, to be advanced by the number of 
bytes of setting data. The final one is the termination call, when the version date and 
checksum are passed. The additional check would expect to see data transfers that are 
both in order and contiguous, and a SIZE field that matches the initial size of the file.

New listype
What we have here is a new listype that includes special checks to avoid 

accepting a downloaded file under certain conditions. The chief program that uses this 
listype is the download page application, which can be easily amended to use the new 
listype when it is targeting a multicast node number.

The current support for listype 76 can include some additional checks. Concerning the 
CPU type for files types LOOP and PAGE, we can check for the contents of the start of the 
file. This will have to be done in NEXTDL at the time that the first data segment is 
transferred. If the check fails, we can stop the download by calling MLIBER to free the 
allocated block and then clearing PTRD. Further data segment settings will fail, because 
there is no PTRD, as will a TERMDL. Besides the CPU check, we can check to be sure there 
are no holes in the transfer, by requiring that every data segment be contiguous and, 
when TERMDL is invoked, by checking that all data segments have been received. We 
can also check that there is sufficient space to accept a new version, as there is no desire 
when copying a file to intentionally free an old version without having something to 
replace it. When one does need to simply remove a file but not replace it, the way to do 

File System Update p. 4



it is to do a INITDL with zero indicated dataSize as the 4-bytes of setting data.

So the two new checks that are to be included for the new listype only are:

The file currently resides in the CODES table.
The version date differs from that of the current file.

If the first of these checks fails, we reject the setting in INITDL. But if the dates do not 
match, we will not know this with the present support until TERMDL, which is too late to 
abort the process. It seems that the setting data passed for INITDL will also need to 
include the version date, following the 4-byte size. This may mean that the version date 
is passed twice, once following the file size for INITDL and secondly following the 
checksum for TERMDL. Eventually, it may be possible to remove the one for TERMDL, but 
if it were missing now, the current date would be used for a version date, which is not 
what we want.

Details
In order to make the extra check on whether the CPU type matches, the logic in 

INITDL must be made more tentative, deferring any real action on the file transfer until 
the first data transfer (NEXTDL) takes place. The size and version date in the INITDL 
setting data must be retained somewhere besides the CODES table entry of the current 
file that may be replaced. One way to do this is to allocate a transient CODES table entry 
for this purpose. (Bear in mind that it is possible for more than one file transfer to take 
place at the same time, although not for the same target file.) Since each setting is 
separate, the transient entry should have a unique name, which may be the one’s 
complement of the file name being downloaded, or some other variation of the real file 
name. Once the first NEXTDL setting arrives, with the offset value of zero, the final 
determination can be made whether the download will actually be allowed to take 
place. It is only at this point that the previous version of the file is discarded. Then the 
previous CODES table entry can be reused, and the transient one discarded.

Review the fields of a 32-byte CODES table entry:

Field Size Meaning
TYPE 4 Type name
NAME 4 File name
SIZE 4 File size
CKSM 4 Checksum
PTRD 4 Download ptr
PTRE 4 Execution ptr
DATE 6 version date in BCD as YrMoDaHrMnSc
CCNT 2 Diagnostic call count

The file size and version date arriving with the INITDL data are kept in the transient 
entry. The type and file names are set to the one’s complement of the type and file name 
that is to be downloaded.

After the first NEXTDL arrives, for which the offset is zero, use FINDP to find the 

File System Update p. 5



transient entry and thus resurrect the file size and version date. Perform the required 
checks. If successful, then delete the original file and initialize the original entry for 
receiving the file transfer; then delete the transient entry. If the checks were 
unsuccessful, merely delete the transient entry. This seems complicated.

Better idea
To further ensure that a new program file is not accepted unless it has been 

completely received without holes, etc, consider allocating dynamic memory for the 
various blocks that arrive. Then, during TERMDL, it is clear whether the file transfer will 
be accepted. Only then should we delete the old version and write a new version — 
releasing all the temporary blocks, of course. Doing it this way would probably require 
some time-out to be imposed on the transfers, so that the temporary memory is released 
and the file transfer aborted, if too much time elapses without the TERMDL call. Since we 
want to permit multiple transfers to be possible at once, as long as they are not the same 
file, we need some organization for the context of such transfers. 

Envision a linked list of allocated file header blocks, each of which pertains to an active 
file transfer and also includes a linked list of allocated data blocks. A new low memory 
ptr variable should be defined to be the head for a linked list of active file transfers. 
(Alternatively, some small amount of static memory could also be used for this, as there 
won’t be very many file transfers active at once; a relatively small limit on the number 
of simultaneously active transfers could be imposed.)

Data structures
What should be in the allocated blocks for this support? For the file header block, 

we need the 8-character file name, the maximum size of the file, the total number of 
bytes accumulated so far, a pointer to the first data block, the time of the start of the 
transfer, and a pointer to the next such file transfer block. Each data block might hold 
the offset for the enclosed data block, the number of bytes enclosed, a ptr to the next 
data block, and the data itself. If an abort occurs, then the header block and all its 
related data blocks are freed. When the termination setting occurs, or if a time-out 
occurs, the header block and all its data blocks are freed. In order to impose a time-out, 
some code should be invoked at 15 Hz that visits each active header block.

If a data setting (NEXTDL) or termination setting (TERMDL) is received, and there is no 
active header block in the linked list, it must be ignored. Only an initial setting (INITDL) 
can install, or reactivate, a header block. It is possible to have an active header block (for 
which a time-out has not yet occurred) and receive an initial setting for that very file, in 
which case, the header block is reactivated. As a byproduct, this can permit 
simultaneous targeting of the same file—maybe.

* Downloaded file header block
*
MBLKSIZE DS 1 ;Block size
NEXTFH DS.L 1 ;ptr to next file header block
MBLKTYPE DS 1 ;Block type#

FILENAME DS.B 8 ;File type,name

File System Update p. 6



FILESIZE DS.L 1 ;File total size
TIMEOUTC DS.L 1 ;Time-out counter
FILEOFFS DS.L 1 ;Offset into file, so far
FILEDBN DS.L 1 ;Count of data blocks

FIRSTDB DS.L 1 ;ptr to first file data block, if any
LASTDB DS.L 1 ;ptr to last file data block, if any

OWNERTID DS.L 1 ;owner task Id, used for pSOS

* Downloaded file data block
*
MBLKSIZE DS 1 ;Block size
NEXTDB DS.L 1 ;ptr to next data block
MBLKTYPE DS 1 ;Block type#

DATAOFFS DS.L 1 ;Offset in file to this data
DATABLKN DS 1 ;Data block#
DATASIZE DS 1 ;Size of following data

DATAAREA DS n ;Data bytes this block

Relevant routines called by SETPROG
The file name argument points to 8 characters; the first 4 are the type name, and 

the last 4 are the file name of that type. The file name and file offset come from the 14-
byte ident. The special flag is set for the new listype designed for multicast file settings. 
It is zero for the usual listype 76 case.

INITDL (filename, offset, setting_data, nBytes, special_flag)

Search header block linked list for match on filename.
If found, free all linked data blocks plus header block.
Abort transfer if special flag set and file has no CODES table entry.
Allocate and append new header block to linked list.
Initialize it with filename, total file size, set fileOffs to zero.
Also set firstDB and lastDB to NULL and initialize time-out counter.

NEXTDL (filename, offset, setting_data, nBytes, special_flag)

Search header block linked list for match on filename.
If not found, ignore and exit.
Find end of linked list of data blocks.
If special_flag set, and file type is LOOP or PAGE, check for correct CPU type.
(If not correct CPU type, DELETEHB.)
Check that setting data with indicated offset fits at this point and is within stated 
file size. If not, DELETEHB.
Allocate data block for setting_data and initialize it, by setting current offset, 
data block count, and data size.
Copy setting_data into data block.
Append data block to end of linked list.

File System Update p. 7



TERMDL (filename, offset, setting_data, nBytes, special_flag)

Search header block linked list for match on filename.
If not found, ignore and exit.
Find end of linked list of data blocks.
Check that total size matches offset + data size in this block.
(If not, DELETEHB.)
If special flag set, check that file has different version date.
(If not, DELETEHB.)
If special flag set, check that file name is in local CODES table.
(If not, DELETEHB.)
Check that there is sufficient room available for downloading 
this file into nonvolatile memory.
(If not, DELETEHB.)
Free current file of same name, if present.
Allocate space for new version.
Copy into new version.
DELETEHB.

DELETEHB (fileHdrBlk)

Scan linked list of data blocks, freeing each one.
Remove file header block from linked list.
Free header block.

Note that an abort that occurs in either the INITDL or the NEXTDL routines results in no 
action by subsequent NEXTDL or TERMDL invocations for that same file.

Diagnostics for SetFile
The following notes describe the diagnostics that were included in the SetFile 

implementation, which is the new version of SetProg that is still called SetProg, which 
is the set-type routine associated with the downloading file listypes.

New support for downloading files into the nonvolatile memory file system may 
benefit from the inclusion of diagnostics. This may be especially helpful during 
debugging. Consider the following diagnostic record structure:

Field Size Meaning
fName 8 4-char file type, 4-char file name

fSize 4 file size
dBlks 2 #data blocks
fStatus 2 status word

dTime 4 time to download in µs
wTime 4 time to write file in µs

fDate 8 time-of-day in BCD

File System Update p. 8



Where can this 32-byte record be recorded? It might be written into a data stream, but 
every node will need this, so it may be easier to define a fixed location for it. An area of 
only 1K in size would allow for 32 such records, which may be more than enough.

If a file transfer is aborted, there should still be a record for diagnostic purposes. One 
approach that may serve is to expand the File Header block format to include a few 
more fields. When DeleteHB is called to delete all data blocks plus the file header block, 
it can record the appropriate diagnostic record. One new field is a status word. When 
an error condition occurs, the code can write into that field a value that will be copied 
into a diagnostic record just before the file header block is freed. Other fields will be the 
elapsed time fields. The date can also be kept in the file header block when it is created. 

If one designs the circular buffer in the same format as a data stream queue, one could 
optionally define it in the DSTRM table and therefore access its contents as a data stream.

List the possible error conditions that are detected by the new code:

Error# Condition
0 (no errors)
1 missing data block, blocks not consecutive
2 invalid CPU
3 data block outside file size range
4 failed to allocate data block
5 missing data at end of file
6 CODES table full
7 new INITDL replaces active transfer
8 file header block time-out
9 FillFile error

10 not enough nonvolatile memory to allocate file (pSOS only)

Error numbers can be stored into the new fileStat field in the file header block. It will 
be copied by the DeleteHB routine (via SFileLog) to build the diagnostic record.

With the addition of the new diagnostic fields, the new 64-byte File Header block 
structure is as follows:

Field Size Meaning
mBlkSize 2 block size
nextFH 4 ptr to next file header block, if any
mBlkType 2 block type#

fileName 8 file type, name

fileSize 4 file total size
fileDBN 2 count of file data blocks
fileStat 2 file error status

File System Update p. 9



fileOffs 4 offset into file, so far
timeOutC 4 time-out counter

firstDB 4 ptr to first file data block, if any
lastDB 4 ptr to last file data block, if any

ownerTId 4 owner task id, used for pSOS only
baseTime 4 base time to measure elapsed time

eTimTotl 4 elapsed time from INITDL to TERMDL
eTimWrit 4 elapsed time to write file to memory

fileTime 8 time of day for file transfer

Post-implementation note
The above scheme was implemented as a part of the new changes for smarter 

downloading in the SetProg module for the PowerPC system. The low memory buffer 
assigned is at offset 0x5400. This buffer allows for 31 file transfer diagnostic records. 
The pointer to the linked list of active file transfers is at low memory location 0x6FC.

In summary, the new file system update scheme is a new manually-driven download 
approach that provides several new features. The idea is to support multicasting, via a 
separate listype, for updating files in many nodes at once, ensuring that only those 
nodes that use a given downloaded file will get updated, and that files are updated only 
if the version date differs from that of the current version. In addition, program files are 
only accepted by nodes of the appropriate CPU architecture. The new listype #97, to be 
used when multicasting file transfers, is easily supported, as its listype table entry is the 
same as that of listype 76 but for the last byte being set to 1 rather than 0.

Care is also taken in IRMs that any file downloading is ignored if there is insufficient 
room available to allocate the file. Also, file downloading data segments must be 
consecutive from beginning to end. No action is taken with the file system until all 
segments have been transferred so that everything is known. Only then is the new file 
written, and for local applications, automatic switching to the newly-downloaded 
version takes place. The new scheme, once it has been installed in all nodes, should 
greatly facilitate file updating across a large number of nodes.

File System Update p. 10


